Omaha Public Schools Effective Best Practices in Mathematics

<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Description</th>
<th>Effect on Student Learning and Achievement</th>
</tr>
</thead>
</table>
| **Daily Cumulative Review** | Daily cumulative review at some point in every lesson is one of the most effective strategies for fostering mastery and retention of critical skills. Students need 5 to 7 exposures to a new concept before that concept will move into long-term memory, and 22 to 27 practices with a new skill before that skill becomes automatic.
- Math Bell-work*
- Spiral Review Problems*
- Exit Tickets*
- Written Summary
- Brain Breaks
- Daily Math Routines*
- Instructional Resources through Acuity* |
- Activates prior knowledge
- Moves knowledge from short-term to long-term memory
- Informs students and teachers whether or not there is mastery of key concepts
- Keeps skills and understanding fresh
- Reinforces previously taught material
- Gives students a chance to clarify understandings
- Provides teacher an opportunity to re-teach
- Gives extra time to process the concept
- Helps in recognizing the connections between various mathematical ideas |
| **Multiple Representations of Mathematical Entities** | Multiple representations, such as models, drawings, diagrams, number lines, tables, and graphs, support the visualization of skills and concepts.
- Number lines*
- Tables*
- Graphs*
- Pictorial Representations*
- Manipulatives
- Word Wall (with representation)
- Kinesthetic Activities
- Graphic Organizer
- Area Models*
- Bar Models*
- Words
- Photographs |
- Allows for understanding through at least one method
- Provides different ways to examine a problem
- Helps students make sense of abstract concepts
- Helps students see there are many ways to interpret information
- The brain can more easily recall information when it is stored in multiple parts of the brain: nonlinguistic content is stored in a different part of the brain than linguistic content, thus giving the brain two ways of remembering content, and enhancing the brain’s ability to recall the information
- Gives extra time to process the concept
- Concrete experiences allow learners to discover misconceptions and correct them |

*Explanation in Appendix

March, 2014
<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Description</th>
<th>Effect on Student Learning and Achievement</th>
</tr>
</thead>
</table>
| Alternative Approaches | Alternative approaches teach that mathematics is a sense-making process for understanding “Why?” and NOT a subject with just one right procedure to get to the correct answer.
 - Inquiry
 - Compare/Contrast Strategies
 - Argumentative Discourse*
 - Think-alouds
 - Math Talk*
 - Allow students to select strategy | • Different methods allow students to make sense in their own way
 • Valuing alternative approaches enriches instruction and provides new levels of access to mathematical understanding
 • Gives students a variety of strategies to solve problems
 • Allows extra time to process the concept
 • Use of multiple strategies allows students to revise their collection of strategies and retain those that are most appropriate for each situation |
| Number Sense | Number sense establishes a comfort with numbers, including estimation, mental math, numerical equivalents, a sense of order and magnitude, and a well-developed understanding of place value. Number sense is taught and reinforced in every math problem.
 - Mental math
 - Estimation
 - Place value
 - Sense of order
 - Equivalence
 - Manipulatives
 - Models
 - Number lines* | • Promotes flexible thinking and reasoning
 • Facilitates problem-solving
 • Enables recognition of unreasonable answers
 • Allows for composing and decomposing numbers in different ways
 • Highlights connections among operations
 • Makes mental math easier
 • Enables students to make reasonable estimations
 • Derived fact strategies improve recall and provide fallback mechanisms for students |

*Explanation in Appendix
<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Description</th>
<th>Effect on Student Learning and Achievement</th>
</tr>
</thead>
</table>
| Language-Rich Classroom | Mathematics is a language, and as such must be encountered orally and in writing, emphasizing academic vocabulary, terminology, explanations, and solutions.
 - Interactive Word Wall
 - Math Talk*
 - Think-alouds by teacher and students
 - Math Journals
 - Marzano’s 6-step vocabulary
 - Think-ink-pair-share
 - Summary writing
 - Note-making
 - Quick writes
 - Cooperative strategies
 - Justify reasoning
 - Math literature | • Higher-level conversation about text motivates reading
• Higher-level thinking transforms knowledge, rather than reproducing it
• Increased interaction with peers, parents, and teachers exposes students to more viewpoints that help them gain perspective on their own ideas
• Social interaction stimulates children to think through their own ideas and to approach objectivity
• Discussion helps students organize and consolidate their thinking, communicate coherently and clearly, analyze and evaluate the thinking and strategies of others, and use the language of mathematics
• Acts as a formative assessment to drive targeted instruction
• Use of math terminology in math talk and writing takes students from progressing to proficient
• Like all languages mathematics must be encountered orally and in writing
• Math terms become internalized when used again and again in context and linked to more familiar words
• Students who think about their own thinking are better able to comprehend a process
• Students come to understand the steps in a process by watching and listening to others (including teachers) think out loud
• Students understand what goes on in the mind of teacher or reader
• Writing provides an additional exposure and opportunity to recall content and reflect on new learning, which enhances retention |
Omaha Public Schools Effective Best Practices in Mathematics

<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Description</th>
<th>Effect on Student Learning and Achievement</th>
</tr>
</thead>
</table>
| Mathematics Embedded in Real-World Contexts | Effective mathematics instruction embeds the content in contexts that connect the mathematics to real-world situations relevant to the students.
 - Non-fiction text
 - Photographs
 - Research
 - Cross-curricular connections (i.e., social studies, science, physical education, family consumer sciences)
 - Project-based learning
 - Life skills
 - Careers
 - Data from current events
 - Sports
 - Authentic coursework | - Students understand and retain knowledge best when they have applied it to a practical setting relevant to their own point(s) of reference
 - Activities that build on established knowledge and skills and more than one sense cause memory pathways to become more easily accessed and cross-referenced for future use
 - Real-world problems establish a purpose for computation practice and fluency | |
| Formative Assessment | Formative assessment provides evidence of student achievement to inform instructional planning and to adapt what happens in classrooms to meet student needs.
 - Quick Writes
 - Exit Tickets
 - White Boards
 - SummaryWrites
 - Mid-Chapter Check Point
 - Verbal Checks
 - Red, Yellow, Green Cups, Cards, Chips
 - Peer/Self Assessments
 - Four Corners
 - Think-Pair-Share
 - Appointment Clock | - Informal checks-for-understanding allow students time to process the information, and provide teachers with valuable information about re-teaching, re-grouping or moving forward
 - Formative assessment provides teachers and students with information that helps students’ achievement of intended learning goals
 - Provides opportunities for descriptive feedback |
Omaha Public Schools Effective Best Practices in Mathematics

<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Description</th>
<th>Effect on Student Learning and Achievement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliberate and Detailed Planning</td>
<td>Effective mathematics instruction requires careful planning that provides coherence for the content, tasks, questioning, and assessments.</td>
<td>• Intentional-use planning fosters students’ ability to think, reason, and problem-solve</td>
</tr>
<tr>
<td></td>
<td>• COW (Curriculum On the Wall)</td>
<td>• Facilitates differentiation</td>
</tr>
<tr>
<td></td>
<td>• Vertical Alignment</td>
<td>• Explicit and systematic instruction significantly improves proficiency in word-problem-solving and operations, across grade levels and diverse student populations.</td>
</tr>
<tr>
<td></td>
<td>• Gradual Release</td>
<td>• Allows for consideration of likely errors and misconceptions, and for planning of strategies to address them</td>
</tr>
<tr>
<td></td>
<td>• A+ OPS lesson plans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Co-planning with co-teacher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plans for involvement of paras</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Careful selection and preplanning of meaningful problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plan for misconceptions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plan for higher-level questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plan for teaching vocabulary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Connect concepts from previous units/courses to current unit</td>
<td></td>
</tr>
</tbody>
</table>

Sources:

Explanation in Appendix