Complete one assignment for reading, writing, and math each day.

Reading: Read the selection and answer the questions. When you are finished, be sure to read a great book!

Writing: Read the prompt and respond in writing. This is a great opportunity to practice your best writing skills and good handwriting.

Math: Complete the standards practice page. Draw pictures or use objects to help you.
Have you ever seen a baseball stadium with a hill in it? In Nashville, Tennessee, there used to be a ballpark called Sulphur Dell. It was one of the strangest ballparks in history.

In most ballparks, the right field fence is about 330 feet from home plate. In Sulphur Dell, it was only 262 feet—which made it very easy to hit home runs, if you hit the ball to just the right spot. That's pretty odd, but not half as weird as the hill in the outfield. It sloped up in front of the right field fence, until it got to about 22 feet high!

Skip Nipper, a historian who wrote about Sulphur Dell in his book *Baseball in Nashville*, calls the stadium "quirky." He likes to tell a story about a player named Phil Weintraub, who had some trouble with the outfield hill in 1934.

"A hard line drive came his way," says Nipper, "and he ran down the hill and reached down to catch the ball and missed it. It went between his legs. He turned around, went up the hill to catch it, and once again it went between his legs. When he finally got it, he threw it over the third baseman's head."

In baseball, when a player makes a mistake, he's charged with an "error." It's pretty bad if a player makes more than one error in a game, but on that play, Phil Weintraub made three!
A lot of great players came through Sulphur Dell, including Bill Dickey, Honus Wagner, and the sultan of swat himself: Babe Ruth. When Ruth came to town, the whole city was excited. The state Senate even made a special resolution, allowing them to leave the Capitol early so they could all go to the game. Back then, you couldn't watch players on TV, and they didn't want to miss their chance to see Babe Ruth. Ruth was in the outfield when he played there in 1934, Nipper says, and "almost broke one of his legs" running on it.

But even though the ballplayers didn't like hills, the people of Nashville loved their ballpark. They called it "the Dell." Nipper started going to games at the Dell when he was a child. His father would take him, and so would his grandfather.

"My dad would take me and my cousin or my brother," he says, "and we would sit on the first base side, so we could see that right field hill. And my grandfather would not let us go to the concession stand until the seventh-inning stretch. He wanted us to watch the game."

One of the greatest games ever played at the Dell was on July 11, 1916. A pitcher named Tom Rogers was on the mound for the Tennessee Volunteers. They called him Shotgun Rogers, because he threw the ball so fast. That night, he pitched better than he ever had. He did something that's only happened a few dozen times in all of baseball history: he threw a perfect game. That means that, in nine innings of play, nobody on the opposing team got a hit. Nobody got a walk. Nobody even got to first base!

By 1963, the old ballpark wasn't so popular anymore. Teams stopped playing baseball there, and eventually Sulphur Dell was torn down. It had been around for almost 100 years.

In 1978, a new team came to town: the Nashville Sounds. They built themselves a brand new ballpark called Greer Stadium. A lot of famous players have played there: Don Mattingly, Ryan Braun, Rick Ankiel—even Michael Jordan, when he was playing baseball. The Sounds played at Greer Stadium through the 2014 season. A new ballpark called First Tennessee Park was built for The Sounds. It opened its doors in 2015, and it is located right beside the state Capitol, on the spot of land Sulphur Dell once stood.

Where does Skip Nipper think they should have built First Tennessee Park? He doesn't care.

"I'm a baseball fan," he says. "I'm going to go wherever they play."
Name: _______________________________ Date: ________________

1. What was Sulphur Dell?
 A. a baseball
 B. a historian
 C. a ballpark
 D. a meeting place for state senators

2. What does this passage describe?
 A. This passage describes the career of baseball stars like Babe Ruth, Don Mattingly, and Ryan Braun.
 B. This passage describes a strange old ballpark and some of the things that happened there.
 C. This passage describes the reasons that some people want to build a new ballpark next to the state Capitol in Tennessee.
 D. This passage describes the different players on the Nashville Sounds.

3. Sulphur Dell was a strange ballpark.

What evidence from the passage supports this statement?

 A. "In most ballparks, the right field fence is about 330 feet from home plate. In Sulphur Dell, it was only 262 feet—which made it very easy to hit home runs, if you hit the ball to just the right spot."

 B. "A new ballpark called First Tennessee Park was built for The Sounds. It opened its door in 2015, and it is located right beside the state Capitol, on the spot of land Sulphur Dell once stood."

 C. "One of the greatest games ever played at the Dell was on July 11, 1916. A pitcher named Tom Rogers was on the mound for the Tennessee Volunteers."

 D. "A lot of great players came through Sulphur Dell, including Bill Dickey, Honus Wagner, and the sultan of swat himself: Babe Ruth. When Ruth came to town, the whole city was excited."
4. Based on the information in the passage, how did baseball fans feel about Sulphur Dell?

 A. Baseball fans hated Sulphur Dell and almost never went to games there.
 B. Baseball fans loved Sulphur Dell and were excited about going to games there.
 C. Baseball fans did not care much about Sulphur Dell one way or the other.
 D. Baseball fans did not like Sulphur Dell at first but started liking it more in the 1960s.

5. What is this passage mainly about?

 A. what watching a baseball game at Sulphur Dell was like for Skip Nipper
 B. what it means for a pitcher to throw a perfect game
 C. what made Sulphur Dell a strange and special ballpark
 D. how the right field fence in Sulphur Dell made it easy to hit home runs

6. Read the following sentence: "By 1963, the old ballpark wasn't so popular anymore. They stopped playing baseball there, and eventually Sulphur Dell was torn down."

 What does the word **ballpark** mean?

 A. a hill in the outfield of a baseball stadium
 B. a fence that is about 310 feet from home plate
 C. a baseball game in which no player gets a hit
 D. a place where baseball is played

7. Choose the answer that best completes the sentence below.

 Sulphur Dell was eventually torn down, _________ it had once been popular and loved by baseball fans.

 A. although
 B. because
 C. before
 D. especially
8. According to the passage, what was weird about the outfield at Sulphur Dell?

__

__

__

9. Describe the trouble Phil Weintraub had with the outfield hill in 1934.

__

__

__

10. Was Sulphur Dell a good place or a bad place for baseball games? Explain your answer using evidence from the story.

__

__

__
Does your school have a library? It probably does. The first libraries belonged to ancient kings. In the Middle Ages, monasteries and convents had libraries. The books in those libraries were written by hand, and they had pictures painted beside the words.

In the United States, most cities have public libraries. Inside most libraries are hundreds of books—and sometimes more!—many of which are available for taking home. Of course, you have to bring any book you borrow back to the library when you’re done.

Libraries help people find information. As the ways people find information change, libraries need to change, too. The Internet is a tool that helps people find information much faster than if they were to look in books, so a lot of libraries have begun using computers and technology to help people keep learning.

The New York Public Library is the most famous library in New York City. When the main branch was opened in 1911, it had a collection of over one million books. Outside this main building, two giant stone lions guard the entrance. Since the library is over one hundred years
old, bringing in new technology is not easy.

The New York Public Library now has computers in every building. You can use the computers to go on the Internet or to write a paper. The librarians will help if you have a question and there are even free classes to help people learn how to use new computer programs. But this is only the beginning of how the library wants to use technology.

In the basement of the library, there is a room filled with computer programmers and designers who are bringing new technology to the library. This place is called the NYPL Labs. Ben Vershbow runs the NYPL Labs. He wants to help the library reach more people. Ben runs projects using "crowdsourcing."

"Crowdsourcing" means getting a lot of people involved to help with a project. Ben is currently using the Internet to find people to help with the library's collection of menus. The library has thousands and thousands of old menus. You can see what people ate in the year 1900 and find out how much that food cost.

In the past, only people in New York could use the New York Public Library. Now, the library is online and everyone can enjoy it. Thanks to technology, we have a new kind of library.
A New Kind of Library - Comprehension Questions

Name: _______________________________ Date: _______________

1. What do libraries help people find?
 A. computers
 B. information
 C. paintings
 D. other people

2. A lot of libraries have begun using computers and technology to help people keep learning. What is a cause of this change, based on the passage?
 A. the difficulty of finding new books to keep in the library
 B. the fact that books are much less popular today than they used to be
 C. the growing number of people who want to visit libraries in person
 D. the ability of the Internet to help people find information quickly

3. Computers are helpful to have in the library. What evidence from the text supports this statement?
 A. Ben Vershbow runs the NYPL Labs.
 B. You can use computers to go on the Internet or to write a paper.
 C. The New York Public Library now has computers in every building.
 D. The librarians will help if you have a question.

4. Why might the title refer to the New York Public Library as "A New Kind of Library"?
 A. because the New York Public Library no longer has any books
 B. because the New York Public Library has been replaced by a different library
 C. because the New York Public Library is now available online, not just to people in New York
 D. because the New York Public Library has been different from other libraries ever since it opened in 1911
5. What is this passage mostly about?
 A. how technology and computers changed the New York Public Library
 B. how public libraries in cities across the United States function
 C. how the New York Public Library has changed the way people use computers
 D. how crowdsourcing can help many people become involved in a project

6. Read these sentences from the text.

 The New York Public Library is the most famous library in New York City. When the main branch was opened in 1911, it had a collection of over one million books. Outside this main building, two giant stone lions guard the entrance.

 What does the word "branch" mean as used in this excerpt?
 A. a part of a tree that grows from the trunk
 B. the arm of a record player
 C. a major part of government
 D. a local store or organization

7. Choose the answer that best completes the sentence.

 ____________ the Internet, only people in New York could use the New York Public Library. Now, the library is online, and everyone can enjoy it.
 A. Before
 B. Next to
 C. However
 D. According to
8. What is Ben Vershbow, who runs the NYPL Labs, currently using the Internet and crowdsourcing to do?

9. What is one effect the Internet has had on the library? Support your answer with evidence from the text.

10. Explain whether technology has changed the library for the better. Support your answer with evidence from the text.
Living things like plants, animals, and people need energy to survive and grow. People eat food for energy, but most plants use energy that they get from sunlight.

When you look at plants such as a tree, flower, or grass, what do you see?

You might notice their stems, trunks, branches, leaves, roots, or flowers, but how do they grow? What are they made from? How did the plant make those parts?

Life is a puzzle in many ways. People don't all agree on how life started or why it exists. Yet a simple way of thinking about how plants grow is to think of the plant itself as a piece of a larger puzzle.

Each plant is a part of its unique environment. Different environments could be oceans, forests, deserts, or cities. Each environment also has its own climate, which is partially based on how much sun and rain an area receives every year.

Since only certain plants grow in hot, cool, wet, or dry climates, each environment is made up
of different types of plant life. A desert may grow palm trees and cacti, while a forest may
grow tall pines or oak trees.

In order for a plant to grow, it needs three very important puzzle pieces: water, carbon dioxide,
and light. Plants use their roots to take in water from the ground. They use their leaves to take
in sunlight and carbon dioxide from the air.

Plants use these three puzzle pieces to make their own food in a process called
photosynthesis. Using the energy from the sun, plants convert water and carbon dioxide into
sugar. This sugar feeds the plant's growth from a seedling into an adult. In the process, the
plant releases oxygen into the air.

Another important piece to the growth of many plants is soil. Using their roots, plants take in
nutrients from the soil that help them grow. Giving a plant a spot in clean soil is important to
make sure it doesn't absorb anything harmful from the dirt.

Plants make their food from carbon dioxide, water and light. They use this food to grow
stems, trunks, roots, branches, leaves, and flowers. Now when you look at a tree, flower, or
even a blade of grass, you can see all the pieces of the plant and how the entire puzzle fits
together.
1. Where do plants get their energy from?
 A. the moon
 B. sunlight
 C. their stem
 D. their roots

2. What does the passage describe?
 A. how plants make food using light, water, and carbon dioxide
 B. how plants make food using only water and light
 C. how plants make food using oxygen, sugar, and soil
 D. how plants make food using sugar, light, and water

3. The climate determines which plants can grow in a particular environment.
 What evidence from the passage best supports this conclusion?
 A. "Each plant is a part of its unique environment. Different environments could be oceans, forests, deserts, or cities."
 B. "Each environment also has its own climate, which is partially based on how much sun and rain an area receives every year."
 C. "A desert may grow palm trees and cacti, while a forest may grow tall pines or oak trees."
 D. "Since only certain plants grow in hot, cool, wet, or dry climates, each environment is made up of different types of plant life."

4. What would happen to a plant if it grew in polluted soil?
 A. The plant would grow faster than in clean soil.
 B. The plant would grow the same as in clean soil.
 C. The plant would not be healthy and could die.
 D. The plant would absorb more nutrients from the soil.
5. What is this passage mostly about?
 A. how plants grow
 B. sunlight and water
 C. energy sources
 D. nutrients in soil

6. Read the following sentences: "Using their roots, plants take in nutrients from the soil that help them grow. Giving a plant a spot in clean soil is important to make sure it doesn't **absorb** anything harmful from the dirt."

As used in the passage, what does "**absorb**" most nearly mean?
 A. use something
 B. take something in
 C. go under something
 D. put something out

7. Choose the answer that best completes the sentence below.

Different environments have different plants. __________, deserts have cacti and rainforests have ferns.
 A. However
 B. Finally
 C. Meanwhile
 D. For example

8. With what process does a plant make its own food?
9. What are the three puzzle pieces that a plant needs to grow?

10. Explain whether plants could make their own food without sunlight.
The snow began to fall early this year, in November, before Susannah even had a chance to bring her puffed-up purple winter coat out of the closet. It did not stop. Cold white confetti came down on the city of Montreal morning, noon, and night, and already Susannah was wondering when the party would end. The other kids in her class loved the snow. They loved that sometimes, when the winds picked up and the roads turned icy, school was cancelled. They liked to build towering forts and snowmen, whose noses were the carrot sticks they found packed in their lunchboxes.

Susannah despised the snow. More than that, she hated everything about wintertime. Her family had taken a trip to Florida two winters ago, and she wished that they could live there all year round. She had bobbed up and down in the ocean waves, sometimes floating on her back and other times, with goggles on, searching for colored fish in the water. In the mornings, her mother had squeezed fresh juice from the Florida-grown oranges that the hotel left in a basket at the front desk. With her brother and sister, Susannah had constructed a magnificent castle on the beach, with a moat and a long, looping flight of stairs. She liked feeling the sand between her fingers. It stuck together every bit as well as snow did, and it didn’t make your teeth chatter.
At the end of this week, Susannah's family was going to drive an hour north to the ski hill. They would spend Saturday there, riding chairlifts to the top of a frosted mountain and following the slopes back down. Susannah refused to go with them. She wanted nothing to do with that thick, white, powdery stuff. It was bad enough that she had to trudge through it every day on her way to Sunnydale Elementary. Arrangements had been made: Grandma was coming to the house to look after her. She was determined to stay warm and dry. There were packets of hot cocoa in the pantry.

Susannah's parents finished packing up the car. Her siblings, who had been throwing snowballs into the air and at each other, piled into the backseat. Soon the station wagon disappeared from view, and Grandma settled into an armchair in front of the television. In a few quick minutes, she was asleep. Susannah glanced outside and gave a sigh. Her hot chocolate was just about gone. She was about to turn towards the sink to rinse her mug when out of the corner of her eye she caught something green. Something green? In her blank, white backyard? She pressed her face up against the kitchen window.

There, in the corner of the yard closest to the sliding back door, the snow had melted away. In its place, a small tree with low-hanging fruit was growing. Susannah immediately ran out to it. Elsewhere, the snowy flakes continued to swirl, but not a single one landed on this bright patch of ground, which was covered in sand. The sun beamed down on Susannah-so hard, in fact, that she was hot! Sweating hot! Half-buried by her feet were a plastic shovel and pail. She couldn't believe it. A small slice of the tropical holiday she had been missing had landed right behind her house. She ran inside for her bathing suit.

For the next few hours, while Grandma lay dozing, Susannah sprawled out on her own little beach. At first, she could not stop smiling. She giddily stretched out her limbs and moved them back and forth, making a snow angel-no, a sand angel! She read a bit of a book. She picked a few oranges and unpeeled them one by one. She dug holes and then filled them in again. After that, she didn't quite know what to do. Apparently, the pleasures of the warm sand beach were a lot less fun when there was no one around to share them with. Susannah would have woken her grandmother, but she remembered that Grandma didn't much care for the sun. She had spent the family's entire Florida vacation under both an umbrella and a huge-brimmed hat. Besides, the sunny space wasn't big enough for two.

By late afternoon, Susannah wasn't feeling very well. Her mother hadn't been around to lather her in suntan lotion and her skin had turned a very dark shade of pink. She had eaten so many sickly sweet oranges that she now had a stomachache. She had gotten some sand in her eye and had to blink furiously to get it out. The sun was strong and unrelenting. She
glanced over to the other side of the yard. She was reluctant to admit it, even to herself, but the snow looked sort of...refreshing. She imagined racing her siblings to the bottom of that frosted mountain. Perhaps skiing with her family wouldn't have been so terrible? She was flushed and bored, but most of all she missed them.

She trudged inside, showered the sweat and the sand off of her body and then joined her Grandma, who had finally awoken, at the table. "My dear! However did you manage to get that awful sunburn?" her grandmother wailed. Susannah just shrugged. She wasn't very hungry, but she managed to pack in some forklfuls of spaghetti and three meatballs. Before bed, she crept over to the backdoor and peered out. The sand, the tree, the bucket—all were gone. Susannah began to think that she had imagined it. She wasn't that disappointed. Her brother and sister would be back in the morning and she badly wanted to play with them. Even if it meant being chilly.

The car pulled into the driveway. Susannah was up with a start, and she charged downstairs. She welcomed both of her parents home with hugs and gave one to her grandmother, too, who was preparing to leave. Then, as her mother began to ready breakfast, she pulled on her snowsuit and joined her siblings in the back. They were sculpting animals—a caterpillar with snowy lumps for a body; a fish with a three-dimensional fin—and they were surprised to see her there. She dropped to her knees, without explanation, and began to work. Her hat was pulled low over her ears, her mittens were lined with wool, and suddenly her sister's hand was over hers, helping to smooth out the fish's curved tail. She could wait for summer. She was warm enough.
1. What season does Susannah dislike at the beginning of the story?
 A. spring
 B. summer
 C. fall
 D. winter

2. Where do the main events of this story take place?
 A. in Susannah's home and yard in Montreal
 B. at Susannah's school in Montreal
 C. in Florida on a vacation that Susannah's family takes
 D. at a ski hill that Susannah's family visits

3. Susannah does not like being outside in the snow.

 What evidence from the story supports this statement?
 A. Susannah built a sandcastle on the beach in Florida.
 B. Susannah refuses to go skiing with her family.
 C. Susannah decides not to wake up her grandmother.
 D. Susannah helps her sister make a fish out of snow.

4. Why does Susannah like spending the winter in Florida more than in Montreal?
 A. Florida is colder than Montreal and gets more snow.
 B. Florida is warmer than Montreal and gets less snow.
 C. The orange juice in Florida is better than the hot chocolate in Montreal.
 D. Susannah gets along better with her siblings in Florida than she does in Montreal.
5. What is this story mainly about?

A. a girl whose favorite time of year changes from winter to summer
B. a girl who has always loved winter because of the snow and ski trips she takes with her family
C. a girl who wants to move to Florida to get away from her family because she does not enjoy playing with her siblings
D. a girl who realizes that being with her siblings in the cold snow is better than being alone in warm weather

6. Read the following sentences: "The snow began to fall early this year, in November, before Susannah even had a chance to bring her puffed-up purple winter coat out of the closet. It did not stop. **Cold white confetti** came down on the city of Montreal morning, noon, and night. . . ."

What does the phrase **cold white confetti** refer to?

A. paper that Susannah is tearing into pieces
B. the stuffing inside Susannah's winter coat
C. the city of Montreal
D. the falling snow

7. Choose the answer that best completes the sentence below.

One corner of Susannah's yard is green and hot ________ the rest of the yard is covered in snow.

A. also
B. because
C. although
D. therefore
8. Describe how Susannah feels about winter and snow by the end of the story.

9. At first, Susannah enjoys her secret beach in the corner of the yard. Why does she feel unhappy with her time on her beach by the late afternoon? Support your answer with three details from the text.

10. Read the following sentences about Susannah from the end of the story:

 "Her hat was pulled low over her ears, her mittens were lined with wool, and suddenly her sister's hand was over hers, helping to smooth out the fish's curved tail. She could wait for summer. She was warm enough."

 Explain why Susannah would feel "warm enough" even though she was still playing in the cold snow.
Whiz! Bing! Thump! Ding ding ding ding ding!

When they're jumbled up together, the sounds at an amusement park can become a roar. At the arcade, there is booming music and the sound of quarters clinking into slots. Two girls jump in unison as they compete in a dance game. Underneath it all, there is the rustling of prize tickets being folded up and jammed into pockets.

At the amusement park, there is noise everywhere. And where there is noise, there is motion.

On a hot summer day, some children hide out from the sun inside the cool, dark bumper car arena. One grinning boy is behind the wheel of a bright blue car with a thick, black bumper. He's too young to drive a real car, but here, he can speed around the track.

The boy sets his sights on a long-haired girl in a green car. She's sitting still, caught in something of a bumper car traffic jam. Then he slams his car into hers. The collision stops his car in its tracks, but it sends her car sailing away from his. In the crash, his car's momentum shifts to her car. They both laugh.

Elsewhere on the track, two other cars careen toward each other. When they crash, both bumper cars reverse course. They bounce backward, away from the point of impact. One driver's head is knocked sideways, but these mini crashes are all fun. No one is hurt and no one is crying.

In the arcade nearby, something similar is happening at the pool table. One player slams her stick into the
white cue ball. This sends the cue ball rolling quickly to the other end of the table, where it hits a striped ball. In an instant, the cue ball stops moving. The striped ball takes on its momentum and sails into the pocket.

Her opponent isn't having much luck at the pool table. He strikes the cue ball with the stick, but aims badly. The white ball bounces off three edges of the pool table until it finally slows and comes to a stop.

At the air hockey table, the action of the game is happening almost too quickly to follow. One player moves to protect her goal, but she's not holding onto her air hockey pusher tightly, and it goes flying out of her hand when the puck hits it.

In the next room two boys are playing ping pong. One boy is new to the game and is losing. Every time he hits the ball, he swings the paddle with too much force. The tiny ball has very little mass, but the boy's fast swing sends it off the table entirely. In this case, the boy is giving the ball too much momentum. Momentum, the quantity of motion in a moving object, is determined by an object's mass and its velocity.

Most of the time, it's against the rules to hit things. But at amusement parks, certain kinds of hitting are part of the fun. The boy losing at ping pong doesn't mind, because he's enjoying hitting the ball as hard as he can. At the batting cage, a girl wearing a helmet hits a baseball with so much force that it makes a loud "crack!"

In the arcade, a man has paid two quarters to see how many small plastic animals he can whack with a rubber mallet. When he hits them, their heads sink back inside the machine. His daughter is sitting in front of another game. She's shooting small balls at stuffed monsters. If she hits one straight on, it falls over and she wins tickets.

At another game, players pay a dollar for the chance to hit some milk bottles with a ball. If they knock all the bottles over, they win a huge stuffed animal. This game is very hard to win even if players throw the ball with a lot of force, because some of the bottles are very heavy. Often, the heavy bottle wobbles but doesn't fall over.

One boy doesn't want to leave the amusement park, but he is exhausted. The batting cage, ping pong, and the milk bottle game have left him with a very tired right arm. All the speed and crashes in the bumper car were fun, but they tired him out as well. There's only so much motion most people can enjoy in a day. Eventually, even the most energetic children run out of momentum. It's time for them to climb into bed and be still.
1. Where does this passage take place?
 A. arcade at a shopping mall
 B. sports center
 C. amusement park
 D. bumper car factory

2. The author provides a list of what?
 A. amusement park concessions
 B. ways momentum is used at an amusement park
 C. amusement park rides
 D. prizes won at an amusement park

3. When the boy crashes his bumper car into the girl's bumper car, the momentum from his car is transferred to hers. What evidence from the text supports this statement?
 A. "She's sitting still, caught in something of a bumper car traffic jam."
 B. "Then he slams his car into hers."
 C. "The boy sets his sights on a long-haired girl in a green car."
 D. "The collision stops his car in its tracks, but it sends her car sailing away from his."

4. Read the following sentences: "Her opponent isn't having much luck at the pool table. He strikes the cue ball with the stick, but aims badly. The white ball bounces off three edges of the pool table until it finally slows and comes to a stop."

 What conclusion can you draw about the cue ball?
 A. It gradually lost its momentum.
 B. It hit three different balls.
 C. It was very heavy.
 D. It was moving slowly.
5. What is this passage mostly about?
 A. different kinds of arcades
 B. examples of motion and momentum
 C. knocking over milk bottles
 D. why bumper cars are fun

6. Why does the author explain momentum by using different examples at an amusement park?
 A. to make the reader feel as though he or she is at an amusement park
 B. to illustrate what momentum is in a confusing way that the reader cannot understand
 C. to illustrate what momentum is with examples that are most likely familiar to the reader
 D. to illustrate what momentum is with examples that are most likely unfamiliar to the reader

7. Choose the answer that best completes the sentence below.
 ________ children are too young to drive real cars, they are allowed to drive bumper cars at amusement parks.
 A. Therefore
 B. Obviously
 C. Initially
 D. Although

8. How is the momentum of an object determined?
9. What happens every time one of the boys playing ping pong hits the ball?

10. How could the boy playing ping pong keep from hitting the ball off the table?

There are many different kinds of entertainment, such as music, games, books, or movies. Explain your favorite type of entertainment and why you like it.
Name:

What is something you want to learn to do? Explain what you would like to learn and why.

__

__

__

__

__

__

__

__

__

__

__

__

__

__
Imagine your school closes for the day, and you can do anything you want. What will you do? Write a story about what happens.
Suppose you had the opportunity to travel anywhere you wanted. Write to explain where you would go and why.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__

Name:

Think about something you would like to change about your school. Write to explain what you would change and why.
Lesson 3.1

Multiply by Tens

Choose a method. Then find the product.

1. \(16 \times 60\)

 Use the halving-and-doubling strategy.

 Find half of 16: \(16 \div 2 = 8\).

 Multiply this number by 60: \(8 \times 60 = 480\).

 Double this result: \(2 \times 480 = 960\).

 \(960\)

2. \(80 \times 22\)

3. \(30 \times 52\)

4. \(60 \times 20\)

5. \(40 \times 35\)

6. \(10 \times 90\)

7. \(31 \times 50\)

Problem Solving

8. Kenny bought 20 packs of baseball cards. There are 12 cards in each pack. How many cards did Kenny buy?

9. The Hart family drove 10 hours to their vacation spot. They drove an average of 48 miles each hour. How many miles did they drive in all?
Lesson Check (CC.4.NBT.5)

1. For the school play, 40 rows of chairs are set up. There are 22 chairs in each row. How many chairs are there in all?
 - A 800
 - B 840
 - C 880
 - D 8,800

2. At West School, there are 20 classrooms. Each classroom has 20 students. How many students are at West School?
 - A 40
 - B 400
 - C 440
 - D 4,000

Spiral Review (CC.2.OA.1, CC.4.OA.2, CC.4.OA.3, CC.4.NBT.4)

3. Alex has 48 stickers. This is 6 times the number of stickers Max has. How many stickers does Max have? (Lesson 2.1)
 - A 6
 - B 7
 - C 8
 - D 9

4. Ali's dog weighs 8 times as much as her cat. Together, the two pets weigh 54 pounds. How much does Ali's dog weigh? (Lesson 2.2)
 - A 6 pounds
 - B 42 pounds
 - C 46 pounds
 - D 48 pounds

5. Allison has 3 containers with 25 crayons in each. She also has 4 boxes of markers with 12 markers in each box. She gives 10 crayons to a friend. How many crayons and markers does Allison have now? (Lesson 2.12)
 - A 34
 - B 113
 - C 123
 - D 133

6. The state of Utah covers 82,144 square miles. The state of Montana covers 145,552 square miles. What is the total area of the two states? (Lesson 1.6)
 - A 63,408 square miles
 - B 223,408 square miles
 - C 227,696 square miles
 - D 966,992 square miles
Lesson 3.2

Estimate Products

Estimate the product. Choose a method.

1. 38×21
2. 63×19
3. 27×42

\[
\begin{array}{c}
38 \times 21 \\
\downarrow \\
40 \times 20 \\
\hline
800
\end{array}
\]

4. 73×67
5. 37×44
6. 85×71

7. 88×56
8. 97×13
9. 92×64

Problem Solving

10. A dime has a diameter of about 18 millimeters. About how many millimeters long would a row of 34 dimes be?

11. A half-dollar has a diameter of about 31 millimeters. About how many millimeters long would a row of 56 half-dollars be?
Lesson Check (CC.ANBT.5)

1. Which is the best estimate for the product 43×68?
 - A 3,500
 - B 2,800
 - C 2,400
 - D 280

2. Marissa burns 93 calories each time she plays fetch with her dog. She plays fetch with her dog once a day. About how many calories will Marissa burn playing fetch with her dog in 28 days?
 - A 4,000
 - B 2,700
 - C 2,000
 - D 270

Spiral Review (CC.ANBT.1, CC.ANBT.3, CC.ANBT.5)

3. Use the model to find 3×126. (Lesson 2.7)

 3

 100

 20

 6

 - A 368
 - B 378
 - C 468
 - D 478

4. A store sells a certain brand of jeans for $38. One day, the store sold 6 pairs of jeans of that brand. How much money did the store make from selling the 6 pairs of jeans? (Lesson 2.10)
 - A $188
 - B $228
 - C $248
 - D $288

5. The Gateway Arch in St. Louis, Missouri, weighs about 20,000 tons. Which amount could be the exact number of tons the Arch weighs? (Lesson 1.4)
 - A 31,093 tons
 - B 25,812 tons
 - C 17,246 tons
 - D 14,096 tons

6. Which is another name for 23 ten thousands? (Lesson 1.5)
 - A 23,000,000
 - B 2,300,000
 - C 230,000
 - D 23,000
Lesson 3.3

Area Models and Partial Products

Draw a model to represent the product. Then record the product.

1. \(13 \times 42\)

\[
\begin{array}{c|c}
40 & 2 \\
\hline
10 & 400 \\
\hline
3 & 120 \\
\hline
\end{array}
\]

\[400 + 20 + 120 + 6 = 546\]

2. \(18 \times 34\)

3. \(22 \times 26\)

4. \(15 \times 33\)

5. \(23 \times 29\)

6. \(19 \times 36\)

7. Sebastian made the following model to find the product \(17 \times 24\).

\[
\begin{array}{c|c}
20 & 4 \\
\hline
10 & 200 \\
\hline
7 & 14 \\
\hline
\end{array}
\]

\[200 + 40 + 14 + 28 = 282\]

Is his model correct? Explain.

8. Each student in Ms. Sike’s kindergarten class has a box of crayons. Each box has 36 crayons. If there are 18 students in Ms. Sike’s class, how many crayons are there in all?
Lesson Check (CC.4.NBT.5)

1. Which product does the model below represent?

 20 3
 10 200 30
 7 140 21

 (A) 161 (C) 340
 (B) 230 (D) 391

2. Which product does the model below represent?

 13 2
 10 130 20
 5 65 10

 (A) 219 (C) 244
 (B) 225 (D) 275

Spiral Review (CC.4.OA.3, CC.4.NBT.5)

3. Maria builds a tabletop using square tiles. There are 12 rows of tiles and 30 tiles in each row. How many tiles in all does Maria use? (Lesson 3.1)

 (A) 100
 (B) 180
 (C) 360
 (D) 420

4. Trevor bakes 8 batches of biscuits, with 14 biscuits in each batch. He sets aside 4 biscuits from each batch for a bake sale and puts the rest in a jar. How many biscuits does Trevor put in the jar? (Lesson 2.12)

 (A) 112
 (B) 80
 (C) 50
 (D) 32

5. Li feeds her dog 3 cups of food each day. About how many cups of food does her dog eat in 28 days? (Lesson 2.4)

 (A) 60 cups (C) 80 cups
 (B) 70 cups (D) 90 cups

6. Which symbol makes the number sentence true? (Lesson 2.8)

 4 0 = 0

 (A) + (C) ×
 (B) − (D) ÷
Multiply Using Partial Products

Record the product.

1. \[23 \times 79 = 1,400 \]
 \[+210 \]
 \[+180 \]
 \[+27 \]
 \[1,817 \]

2. \[56 \times 32 = 1,792 \]

3. \[87 \times 64 = 5,568 \]

4. \[33 \times 25 = 825 \]

5. \[94 \times 12 = 1,128 \]

6. \[51 \times 77 = 3,887 \]

7. \[69 \times 49 = 3,381 \]

8. \[86 \times 84 = 7,224 \]

9. \[98 \times 42 = 4,016 \]

10. \[73 \times 37 = 2,711 \]

11. \[85 \times 51 = 4,335 \]

Problem Solving \(\text{REAL WORLD}\)

12. Evelyn drinks 8 glasses of water a day, which is 56 glasses of water a week. How many glasses of water does she drink in a year? (1 year = 52 weeks)

13. Joe wants to use the Hiking Club's funds to purchase new walking sticks for each of its 19 members. The sticks cost $26 each. The club has $480. Is this enough money to buy each member a new walking stick? If not, how much more money is needed?
Lesson Check (CC.AN.5.3)

1. A carnival snack booth made $76 selling popcorn in one day. It made 22 times as much selling cotton candy. How much money did the snack booth make selling cotton candy?
 \[42 \times 28\]
 \[\text{A} \ 800, 80, 40, 16\]
 \[\text{B} \ 800, 16\]
 \[\text{C} \ 800, 40, 320, 16\]
 \[\text{D} \ 80, 16\]

2. What are the partial products of \[35 \times 7\]
 \[\text{A} \ 10, 12\]
 \[\text{B} \ 21, 35\]
 \[\text{C} \ 210, 35\]
 \[\text{D} \ 350, 21\]

Spiral Review (CC.AO.4, CC.AO.3, CC.AN.5.3)

3. Last year, the city library collected 117 used books for its shelves. This year, it collected 3 times as many books. How many books did it collect this year?
 \[\text{(Lesson 2.1)}\]
 \[\text{A} \ 832\]
 \[\text{B} \ 428\]
 \[\text{C} \ 351\]
 \[\text{D} \ 72\]

4. Washington Elementary has 232 students. Washington High has 6 times as many students. How many students does Washington High have?
 \[\text{(Lesson 2.11)}\]
 \[\text{A} \ 1,392\]
 \[\text{B} \ 1,382\]
 \[\text{C} \ 1,292\]
 \[\text{D} \ 1,281\]

5. What are the partial products of \[35 \times 7\]
 \[\text{(Lesson 2.7)}\]
 \[\text{A} \ 10, 12\]
 \[\text{B} \ 21, 35\]
 \[\text{C} \ 210, 35\]
 \[\text{D} \ 350, 21\]

6. Shelby has ten $5 bills and thirteen $10 bills. How much money does Shelby have in all?
 \[\text{(Lesson 2.12)}\]
 \[\text{A} \ 65\]
 \[\text{B} \ 60\]
 \[\text{C} \ 63\]
 \[\text{D} \ 180\]
Multiply with Regrouping

Estimate. Then find the product.

1. Estimate: \(\underline{2,700} \)

 Think: 87 is close to 90 and 32 is close to 30.

 \[
 \begin{array}{c}
 87 \\
 \times 32 \\
 \hline
 2,764 \\
 \end{array}
 \]

 \[90 \times 30 = 2,700\]

2. Estimate:
3. Estimate:
4. Estimate:

5. Estimate:
6. Estimate:
7. Estimate:

Problem Solving

8. Baseballs come in cartons of 84 baseballs. A team orders 18 cartons of baseballs. How many baseballs does the team order?

9. There are 16 tables in the school lunch room. Each table can seat 22 students. How many students can be seated at lunch at one time?
Lesson Check (CC.4.NBT.5)

1. The art teacher has 48 boxes of crayons. There are 64 crayons in each box. Which is the best estimate of the number of crayons the art teacher has?
 - A 2,400
 - B 2,800
 - C 3,000
 - D 3,500

2. A basketball team scored an average of 52 points in each of 15 games. How many points did the team score in all?
 - A 500
 - B 312
 - C 780
 - D 1,000

Spiral Review (CC.4.OA.1, CC.4.OA.2, CC.4.OA.3, CC.4.NBT.5)

3. One Saturday, an orchard sold 83 bags of apples. There are 27 apples in each bag. Which expression represents the total number of apples sold? (Lesson 3.4)
 - A $16 + 6 + 56 + 21$
 - B $160 + 60 + 56 + 21$
 - C $160 + 60 + 560 + 21$
 - D $1,600 + 60 + 560 + 21$

4. Hannah has a grid of squares that has 12 rows with 15 squares in each row. She colors 5 rows of 8 squares in the middle of the grid blue. She colors the rest of the squares red. How many squares does Hannah color red? (Lesson 2.9)
 - A 40
 - B 140
 - C 180
 - D 220

5. Gabriella has 4 times as many erasers as Leona. Leona has 8 erasers. How many erasers does Gabriella have? (Lesson 2.1)
 - A 32
 - B 24
 - C 12
 - D 2

6. Phil has 3 times as many rocks as Peter. Together, they have 48 rocks. How many more rocks does Phil have than Peter? (Lesson 2.2)
 - A 36
 - B 24
 - C 16
 - D 12