Complete one assignment for reading, writing, and math each day.

Reading: Read the selection and answer the questions. When you are finished, be sure to read a great book!

Writing: Read the prompt and respond in writing. This is a great opportunity to practice your best writing skills and good handwriting.

Math: Complete the standards practice page. Draw pictures or use objects to help you.
Outside the window, Oscar saw a billboard that said: "When You Want Ham-Buy Stinson Ham!" Soon after, there was another billboard. It said: "Turn Left for Bronson's Apple Orchard." After that, there were several billboards about "Uncle Bucky's Supreme Fireworks Shack." A few hundred feet past that, he saw another one, advertising a hamburger restaurant called "Stuckey's." The hamburger on the sign had turned green. Oscar's face turned green, too.

Oscar did not want ham. He didn't want to go apple picking. And he certainly did not want a green hamburger. He did want some fireworks, but he doubted his parents would stop for that. You're not allowed to have fireworks in the car; not on a road trip, anyway. That is because fireworks are tons of fun, and road trips are the most boring thing in the world.

There was something Oscar wanted to ask his dad. He wanted to ask it so bad, his stomach hurt-just like it would have if he had eaten that green hamburger. But he knew that no matter what, he couldn't say the words. Oscar did not want to be a brat, and his dad had told him that this was a question that only brats asked.
The question was, "Are we there yet?"

His sister Georgia had asked that a few hundred billboards earlier. It did not go well.

"Are we there yet?" she asked.

"Georgia..." said their mom.

"But arrrrrrrrre we?" she asked again.

"If we were there," said Dad, "do you think we'd still be driving?"

This is what Dad considered a very witty remark. Oscar didn't think it was funny at all, and neither did Georgia.

"I don't know," she said. "Maybe?"

That was the end of the conversation.

A few years later—or maybe it was just an hour—Georgia was asleep, and Oscar was about to explode. At least, that's how it felt. He wondered if a kid could explode from boredom. It would certainly liven up the car ride.

He looked at his sister, curled up on the other side of the backseat. He didn't know how anyone could sleep that way. Her arms were twisted like a pretzel. Her head was hanging to the side, and a piece of chewed-up gum dangled out of her mouth. It moved a little, back and forth, every time she breathed. Oscar thought she looked like a marionette with its strings cut.

Georgia could sleep anywhere. On every road trip, she spent nearly the whole time passed out. Sometimes, she would stretch all the way across the backseat, and poke her toes into Oscar's face. Oscar could never sleep in the car. He was doomed to suffer the whole way there—just him and a thousand billboards, all with pictures of green hamburgers.

Oscar noticed that his left leg was bouncing up and down. It was bouncing really fast, like a jackhammer. He did not know when it had started bouncing. He wasn't sure he could make it stop.

"Uh, Dad," he said.

"Not now, Oscar."

Oscar was startled when his right hand twitched. It twitched again. It started to bounce a little
bit on its own. Slowly, it rose above his leg. It began to flutter—just as fast as his left leg.

"Dad, I don't think I can sit still any more."

"Just a little farther, dear," said Oscar's mom.

Now his right leg was bouncing, even faster than his left. Up and down, up and down. Oscar was starting to feel like a ball attached to a Ping-Pong paddle. Soon enough, his left hand started fluttering as well. His head began to shake back and forth. His hair flopped wildly, like a storm-tossed boat.

"Daaaaaad!"

"What, Oscar?"

Oscar knew he had to stop himself from bouncing before he rattled himself apart. But there was only one way. It wouldn't be easy, but he had to do it. He had to ask the question—no matter what the consequences were.

"Dad?" he shouted. "Are we there yet?!!"
1. What is Oscar's family doing?
 A. driving to the store
 B. shopping for fireworks
 C. taking a road trip
 D. eating hamburgers

2. What main problem does Oscar face?
 A. He is hungry.
 B. He is bored.
 C. He is tired.
 D. He is thirsty.

3. Oscar's father does not like being asked, "Are we there yet?" What evidence from the story best supports this conclusion?
 A. "But he knew that no matter what, he couldn't say the words."
 B. "His sister Georgia had asked that a few hundred billboards earlier."
 C. "'If we were there,' said Dad, 'do you think we'd still be driving?'"
 D. "His dad had told him that this was a question that only brats asked."

4. Read the following sentence: "A few years later—or maybe it was just an hour—Georgia was asleep, and Oscar was about to explode." How does Oscar feel about the time spent in the car?
 A. He feels like time is passing slowly.
 B. He feels like time is passing quickly.
 C. He feels like time is passing normally.
 D. He feels like time is frozen.

5. What is this story mostly about?
 A. billboards that Oscar sees along the road
 B. a boy who explodes from boredom
 C. a boy who can't sit still in the car
D. what happens when you eat a green hamburger

6. Read the following sentences:

"'Are we there yet?' she asked.

'Georgia...' said their mom.

'But arrrrrrrre we?' she asked again."

Why does the author spell "are" this way?

A. to show that Georgia is whining
B. to show that Georgia is yelling
C. to show that Georgia is whispering
D. to show that Georgia is speaking normally

7. Choose the answer that best completes the sentence below.

First, Oscar's left leg starts bouncing up and down. ______, his right hand twitches and begins to bounce.

A. Thus
B. But
C. Namely
D. Then

8. What does Oscar think about road trips?
9. Describe the series of things that happen to Oscar's body toward the end of the story.

10. Why does Oscar start bouncing and shaking? Support your answer with evidence from the story.
"Eew, gross, Joey," said Kayla.

Joey, once again, had taken his entire lunch plate and mixed all the food together. It was his favorite thing to do at camp. Today they had spaghetti and meatballs, green beans, cornbread, and chocolate cake for dessert. Joey had started by mashing the cornbread and chocolate cake together. Then he stirred the green beans into the spaghetti. Finally, he took the mashed-up chocolate corn-cake combination and sprinkled it on top of the spaghetti and meatballs and green beans. Joey now had one dish: chocolate corn-cake-flavored spaghetti and green-bean meatballs.

Joey did something like this pretty much every day. "It's an experiment," he told the table. "Like what we do in class. It's fun." Joey was into experiments, which usually consisted of taking one or more things, and combining them somehow—mixing together dirt and sand, stirring glue into a glass of water, combining the different kinds of paint in the art room (which usually resulted in brown), and mixing all his food together. This wasn't even the grossest experiment Joey did at lunch. The worst was when he took the mashed-up food and dunked it in his milk. Sometimes the milk would turn different colors. Sometimes the mashed-up food would float, sometimes it would sink and sometimes it would dissolve. Sometimes part of it
Experiments

would dissolve and part wouldn't, like the time he shoved a mashed-up blueberry cake into his glass of milk. The cake part had gotten soggy and dissolved, but the blueberries had stayed together and just floated around in the milk. The only way Joey knew this is because he'd tried a sip and gotten a couple blueberries. He couldn't actually see them in the milk because it had turned a brownish-blue. Joey would usually take a sip as part of the experiment, and would try to get the other kids at the table to try it too. Joey sometimes offered a dollar to anyone who could drink three sips, but nobody ever could. Joey's experiments almost always tasted absolutely horrible.

Joey offered a bite of the chocolate corn-cake flavored spaghetti and green-bean meatballs to the other kids at his table. Jeanette took him up on it. She was the only one who sometimes liked Joey's experiments. But even she couldn't eat more than a bite. Which meant the table would lose their "wasted food challenge"-again.

As part of camp lunch, all the tables weighed their leftovers at the end of the meal. One by one the tables would line up, scrape their plates into a garbage can, and then the garbage can would be weighed. The garbage can itself weighed three pounds exactly, so that was deducted from the total. Whichever table had the least amount of wasted food got to be first in line the next day at lunch. Whoever had the most amount of wasted food had to stay and help with the dishes. Each table had the same amount of campers, to be fair. The tables were each named after a different kind of tree that was found at the camp. Joey's table was the Scrub Pine table. Scrub Pine table had lost so many times that everyone called them the Scrub all-the-time table.

Everyone blamed Joey. He was always the one with all the leftover food. But Joey insisted it wasn't his fault. He had a trick. Before each weighing, he always mashed up his concoction into the smallest ball possible. Almost everyone else's plate was strewn with uneaten food. Joey just had a ball in the corner of the plate.

Scrub Pine table had already done dishes four days in a row, and it looked like it was about to be five. So DeSean decided to conduct an experiment of his own. "Hey, I'm going to ask the kitchen staff if we can weigh each plate separately this time," he said. "Then we'll know whose fault this is." This was fine with Joey. He was sure he wasn't the problem. "And whoever leaves the most food has to clean the sinks at the end." This was the worst job, the one all the kids tried to get out of. After the dishes, the sinks were always lined with a wet, grimy mess of food scum.

One by one they weighed their plates. DeSean's weighed ¼ pound. So did Jeanette's. Kayla's
didn't weigh anything. Everyone else's plate weighed ½ pound or less. Except Joey's. Joey's weighed one and ¾ pounds.

The whole table looked at Joey. "But how?" he said. "I made the ball so small!"

"It doesn't work like that" said DeSean. "It doesn't matter how small you make the ball. You're just shifting it around. It's still the same amount of food, and weighs the same."

Joey hated cleaning the sink scum. So he tried one more thing. "But, c'mon. You guys never help me eat my experiments" he said. "I help you with your plates." This was true. Joey was usually so hungry after he had ruined his own lunch that the others at the table took pity on him and let him have some of theirs. "So we should all do the sinks."

Nobody was impressed by this argument. Everyone rolled their eyes at Joey. "You're doing the sinks," said Kayla. "And we're all tired of doing dishes. From now on, no more experiments that are too gross to eat."
1. What does Joey do with the food on his lunch plate?
 A. He mixes it all together.
 B. He eats it very quickly.
 C. He throws it at the people sitting around him.
 D. He eats the chocolate cake but not the green beans.

2. In this story, staying after lunch to help with the dishes is an effect. What is the cause?
 A. sharing food with other people at lunch
 B. mixing food together to create new tastes
 C. eating at the lunch table with the largest amount of wasted food
 D. coming up with the idea of stirring glue into glasses of water for fun

3. Mashing his food up into the smallest ball possible does not make Joey's plate weigh less.

What evidence from the passage supports this statement?
 A. Joey tells other people from his table that they should help him clean the sinks because he helps eat their food.
 B. Joey combines the food on his lunch plate into a single dish: chocolate corn-cake-flavored spaghetti and green-bean meatballs.
 C. Joey's experiments almost always taste horrible, but there is one person at his table who sometimes likes them.
 D. Joey's plate weighs one and ¾ pounds, while the plates of everyone else at his table weigh ½ pound or less.
4. What could be a reason that Joey's table keeps losing the wasted food challenge?

A. Joey likes to mix together dirt and sand, stir glue into glasses of water, and combine all his food at lunch.
B. The weight of Joey's uneaten food makes the total weight of his table's plates higher than the total weight of plates at other tables.
C. The worst part about doing the dishes is having to clean the wet, grimy mess of food scum out of the sinks at the end.
D. DeSean decides to conduct an experiment to figure out whose fault it is that the Scrub Pine table keeps losing the wasted food challenge at lunch.

5. What is this story mainly about?

A. Joey's food experiments and DeSean's weight experiment
B. how to make chocolate corn-cake-flavored spaghetti and green-bean meatballs
C. how to make chocolate corn-cake-flavored spaghetti and green-bean meatballs
D. the reasons that Kayla thinks Joey's food experiments are gross

6. Read the following sentences: "So DeSean decided to conduct an experiment of his own. 'Hey, I'm going to ask the kitchen staff if we can weigh each plate separately this time,' he said. 'Then we'll know whose fault this is.'"

What does the word experiment mean?

A. a problem that occurs when no one is expecting it
B. one or more actions taken in order to find something out
C. a type of behavior that is harmful to the person doing it
D. an agreement made between two or more people to solve a problem

7. Choose the answer that best completes the sentence below.

Most campers do not want to try Joey's food experiments ________ they are too gross to eat.

A. although
B. because
C. before
D. especially
8. According to the passage, what do Joey's experiments usually consist of? Give one example.

__

__

__

9. What experiment does DeSean decide to conduct?

__

__

__

10. How are Joey's experiments and DeSean's experiment alike?

__

__

__
Jeremy couldn't believe his luck. The morning of his 6th grade field trip to the Rose Center for Earth and Space at the Museum of Natural History, he fell ill. "This can't be," he thought. "Science is my favorite subject, and I'm not going to be able to go to the Museum with Mr. Connolly and my friends?" He pleaded with his parents to let him go to school anyway, but they were firm in their refusal. "The sooner you rest at home, the sooner you'll get better," his mother said. "Don't be so hard on yourself, champ," his father said. "We can always go another time."

"I won't be with Mr. Connolly and my science class if I go another time," Jeremy protested. "It won't be the same."

"It won't be the same if you're feeling ill at the museum either," his mother said, trying to reason with him. "Now take this medicine and go lie back down."

Jeremy closed his eyes as he swallowed the white tablet with a gulp of water. "What if I feel
better before the field trip begins?"

"We'll decide then," his mother said, while his father nodded.

Jeremy returned to his bed, fuming. Even though it was sunny outside, he felt a black cloud hovering over his head, threatening stormy weather inside his brain and making him angry. But soon after he lay in bed, the medicine his mother had given him began working, and he fell asleep almost right away.

When Jeremy awoke, his room was bathed in darkness. Outside his window it was dark, too. What time was it? Had he slept through the day? Was it the next day? Was it the middle of the night? Jeremy was completely confused. "Mom!" he called out.

Jeremy's dad walked into his room with a smile on his face, and wearing his hiking shoes. "Champ! You're awake," he said.

"What time is it? Did I miss everything?"

Jeremy's dad put a hand on his forehead and checked for a temperature. Nothing. "Not at all, in fact, you're just in time for your field trip. If you're feeling better, that is."

Jeremy jumped out of bed, stretched, and did a little dance. His energy was back. "I'm feeling fine," he said.

"Great. Now put on a sweater and lace up your shoes and follow me."

Jeremy checked the time as he was getting dressed. 8:05 p.m. It didn't make any sense. Where could he possibly be going with his father so late in the day? Surely the museum was closed, and Mr. Connolly had gone home. But Jeremy didn't slow down. He dressed and met his father in the living room, where he was sitting with a man he had never met before, and a peanut butter and jelly sandwich, his favorite.

"I have a surprise for you," his father said. "Jeremy, meet Professor Helfand. He is a professor of astronomy at Columbia University, where they have an observatory. Do you know what an observatory is?"

Jeremy nodded. "Mr. Connolly described them to us in class when we began the chapter on planetary science. It's a viewing tower from where you can observe the planets and galaxies through high-powered telescopes, track their movements, and study their behavior." Jeremy was talking so fast, he could barely chew on his sandwich.
"That's absolutely right," Professor Helfand said, impressed. "And because you missed your field trip this morning, we're going to pay a little visit to the observatory tonight so that you can have a field trip of your own."

Jeremy couldn't believe his ears. "I'm ready!" he shouted at his dad.

"Not so fast, champ. Finish your sandwich, and then we'll go. You haven't eaten anything all day, remember?"

"I can't believe I slept all day—but this is the best night of my life!" Jeremy said with a laugh.

Jeremy, his dad, and Professor Helfand took the subway to Columbia University, where they walked to the Physics Building and took the elevator to the top floor. There were many rooms with all kinds of computers, some big and others small, some that looked like really old machines and others that looked brand new. Most had notebooks next to them, which were filled with charts, numbers, even little drawings of orbits. Professor Helfand explained that each computer was connected to a specific telescope, and that there was one person in charge of each telescope, and observing the movement of one planet, or star.

Jeremy noticed that some of the charts showed patterns: numbers that repeated, timings separated by exactly one hour. The professor showed him that the repeating numbers were distances between planets, or between planets and their moons, or distances between stars, and showed him how the orbits of these planetary bodies created patterns of collective behavior. "Because of gravitational forces," he said, "the planets and their moons have fixed orbits, and so they end up being the same distance from each other every so often. Once we have enough of these numbers written down, and have been tracking these planets' trajectories for enough time, we can create models that predict where these planets, and their moons, are going to be one month from now, or one year from now—how far from each other, how far from planet Earth, our moon and our sun."

"I keep forgetting that there is more than one sun in the universe," Jeremy said after a pause. "How many suns are there?"

"That's a great question, and not one that we have the answer to," Professor Helfand replied. "What we know so far is that planet Earth, and the seven other planets in our solar system, are part of the Milky Way galaxy, which is one of many galaxies in the universe. The farther we can see with our telescopes, and the more patterns and behaviors we can predict and detect of all the celestial bodies we know so far, the more galaxies we can discover, and the more suns we can identify. But it's going to take a lot of work to get there."
"How exciting," Jeremy said, marveling at the possibilities of discovery in front of them.

Jeremy's father called Jeremy over to the central observation deck, where an enormous telescope had been set up and positioned on a specific constellation in the sky. "Can you identify it?" his father asked him.

"I think so. The Big Dipper?"

"Absolutely right!" Professor Helfand said. "It's part of one of the brightest constellations we can see, called Ursa Major. Here's a little trick about Ursa Major and the North Star. See the two stars on the extreme right, at the bottom of the constellation?"

Jeremy looked carefully into the telescope and trained his eyes slowly to the right, where the handle of Big Dipper sank downwards and turned into a trapezoid. "Yes, I see the base of the constellation," he said.

"Perfect. Now, imagine a line connecting those two stars—they're called Merak and Dubhe—and extend it all the way up into the top of the lens."

Jeremy imagined a bright white line connecting the two stars, and stretching past them. It felt like he was connecting the dots in an art book from 2nd grade, only this was way cooler. 'O-k-a-y,' he said slowly. He could feel his father's hands on his shoulders, keeping him steady.

"What do you see, champ?" his father asked.

Jeremy stared into the lens, trying to stay focused. "Oh!" he shouted. "I think I see another star, but it looks bigger than all the others! Is it really a star?" Jeremy squirmed with excitement.

"Well done," Professor Helfand said. "You just located the North Star in our humongous sky. You know, Jeremy, maybe when you're older, you can join our team and help us look for more constellations and galaxies in the sky. There's so much out there that we have no idea about. Would you be interested?"

Jeremy thought about Mr. Connolly and his friends walking around the Rose Center and playing with the kiddie exhibits, while he stood here at the top of the world, looking deep into the sky. "I can't wait," he said, with a smile on his face as bright as a hundred suns.
1. Why does Jeremy miss the field trip with his science class?
 A. because his dad wants him to stay home
 B. because science is his least favorite subject
 C. because he is sick
 D. because he wanted to go to an observatory instead

2. One problem is that Jeremy is upset that he's missing his field trip. How does his father solve this problem?
 A. He shows Jeremy how to use a telescope at home.
 B. He arranges a night visit to an observatory at Columbia University.
 C. He asks Mr. Connolly to postpone the trip.
 D. He drives Jeremy to the Rose Center later in the day to meet his class.

3. Which of the following statements best supports the conclusion that Jeremy thinks discovery is an exciting part of science?
 A. Jeremy asks Professor Helfand "how many suns are there?"
 B. Jeremy refers to the night as the best night of his life.
 C. He is angry that he cannot go to the Rose Center.
 D. Jeremy was "marveling at the possibilities of discovery in front of them."

4. At the end of the story Jeremy refers to the exhibits on the field trip as "kiddie" exhibits. What does this suggest he feels?
 A. He is only interested in astronomy if he can use a telescope.
 B. He feels that science is a subject for little kids.
 C. He's lost his interest in space because he missed the field trip to the museum and ended up at the conservatory.
 D. He has learned something he considers more grown up and useful at the conservatory than he would have on his field trip.
5. What is the story mostly about?
 A. The many things Jeremy learns on his trip to the observatory
 B. The day Jeremy stays out home because he is sick
 C. How Professor Helfand became interested in astronomy
 D. Jeremy's field trip to the Rose Center

6. "Not so fast champ. Finish your sandwich, and then we'll go. You haven't eaten anything all day, remember?"
 Why might the author have included the above sentence?
 A. to point out how difficult it is to eat when you feel sick
 B. to show how strict Jeremy's dad is
 C. to show the reader what kind of food Jeremy likes
 D. to illustrate how excited Jeremy is

7. Choose the answer that best completes the sentence below.

 Jeremy gets too sick for his field trip and ___________ learns what it might be like to be a real scientist.
 A. consequently
 B. previously
 C. on the other hand
 D. in particular

8. Jeremy wants to be a scientist when he gets older.
 Use evidence from the text to support this statement.
9. What does Jeremy learn about the stars and universe from Professor Helfand?

__

__

__

10. What does Jeremy learn about the subject of science and how it could apply to his future?

__

__

__

__
Mount Everest is the tallest mountain in the world. It is located in the country of Nepal. It is 8,848 meters tall. This means it is just over five-and-a-half miles in height. Until 1953, nobody had successfully climbed Mount Everest, though many had tried.

Mount Everest has steep slopes. Many climbers have slipped and fallen to their deaths. The mountain is very windy. Parts of it are covered with snow. Many mountaineers would get caught in snowstorms and be unable to climb.

The mountain is rocky. Sometimes, during snowstorms, rocks would tumble down the slopes of the mountain. Any climbers trying to go up the mountain might be risking their lives. There is also very little oxygen atop Mount Everest. This is because the oxygen in the air reduces as we go higher. This means that it is difficult for climbers to breathe. The climbers usually take oxygen in cylinders to breathe. If they do take oxygen tanks, they have to carry extra weight on their backs. This slows them down.

In 1953, a New Zealand-based climber, Edmund Hillary, and a Nepalese climber, Tenzing Norgay, climbed Mount Everest for the first time. They both took photographs on the peak. They then buried some sweets on the peak, as a gesture to celebrate their climb. But they
could not stay for long, because it was windy and snowy. They soon came down.

Later, many people asked Edmund Hillary and Tenzing Norgay which of them had reached the peak first. They both said it was a team effort; it didn't matter because they had gone together.

After Edmund Hillary and Tenzing Norgay, many other climbers went up the mountain. In 1975, Junko Tabei became the first woman to climb Mount Everest.

In 1980, Reinhold Messner became the first man to climb the mountain alone. Until then, climbers had always gone up the mountain in teams. The team members would help fix ropes, set up camps, and make food. But Reinhold Messner went alone to the top.

Reinhold Messner was a great climber. Back in 1978, he had climbed Everest without carrying any extra oxygen. He'd said that it was "man against the mountain."

In recent years, many have climbed Mount Everest. As of 2010, 3,142 people had climbed the mountain. Many climbers fly to the city of Kathmandu in Nepal. In Kathmandu, many see the Royal Palace. They can buy Everest-themed T-shirts, books, and CDs.

Once climbers are settled in Kathmandu, they meet Sherpas. The Sherpas are locals who have grown up in the mountains near Mount Everest. Many Sherpas are experts at climbing, and they act as guides for climbers. The Sherpas also carry equipment, such as bags, ropes, and tents.

As of 2013, the equipment for climbing Mount Everest cost almost $8,000. The climbers may also buy oxygen cylinders, which can cost about $3,000. Once the climbers have all their luggage, they go to a location called Base Camp. From Base Camp, they climb up Mount Everest.
1. What is the tallest mountain in the world?
 A. Mont Blanc
 B. Mount Everest
 C. Kilimanjaro
 D. Mount McKinley

2. What does the author describe in the beginning of the passage?
 A. why people climb Mount Everest in teams
 B. the two men who first climbed Mount Everest
 C. who Sherpas are and what they do
 D. the dangers of climbing Mount Everest

3. It is harder for people to breathe on Mount Everest than at sea level. What evidence from the passage supports this conclusion?
 A. Mountaineers can get caught in snowstorms.
 B. Mount Everest is windy, cold, and dangerous.
 C. The amount of oxygen in the air drops as you go higher.
 D. Rocks can tumble down the slopes of the mountain.

4. Read the following sentences: "Many climbers fly to the city of Kathmandu in Nepal. In Kathmandu, many see the Royal Palace. They can buy Everest-themed T-shirts, books, and CDs."

Which of the following conclusions is supported by this information?
 A. Mount Everest helps drive tourism in Nepal.
 B. Only climbers buy Everest-themed T-shirts.
 C. Most people visit Kathmandu to see the Royal Palace.
 D. Flying to Kathmandu is the only way to reach Everest.
5. What is this passage mostly about?
 A. the dangers of mountain climbing
 B. routes from Base Camp to the summit
 C. the cost of climbing supplies
 D. climbing Mount Everest

6. Read the following sentences: "There is also very little oxygen atop Mount Everest. This is because the oxygen in the air **reduces** as we go higher. This means that it is difficult for climbers to breathe."

What does "**reduces**" mean as used in this sentence?
 A. becomes visible
 B. becomes smaller
 C. becomes challenging
 D. becomes larger

7. Choose the answer that best completes the sentence below.

 __________ Reinhold Messner, no one had successfully climbed Mount Everest alone.

 A. In the end
 B. Such as
 C. Before
 D. Instead

8. Who first successfully climbed Mount Everest?
9. Name three dangers that climbers face when climbing Mount Everest.

Got Allergies?

More people in the United States have allergies today compared with decades ago. Allergies are bad reactions to things around you or that you eat.

In 2010, more than half of Americans were sensitive to at least one allergen. That was the finding of one survey by the National Institutes of Health. Allergens are things that set off allergies. Many allergens—such as dust and mold—are found in the air.

"Allergies [are] increasing over time," said Andy Nish. He is a doctor from Georgia.

Allergens in the air aren't the only problem. Kids' food allergies have risen too. Between 1997 and 2007, the number of kids with food allergies jumped 18 percent. Eating milk products and eggs can give some children rashes. Those foods can even cause some people to have trouble breathing.

What's behind the spread of allergies? Some scientists think our immune systems don't have enough to do. Immune systems help our bodies fight germs. But kids today come in contact with fewer germs than their grandparents did. That's in part because more medicine is available. Experts say that when our immune systems have fewer germs to fight, they can get confused. They attack other things, such as milk that we drink, instead.
Other scientists say hotter temperatures are to blame. They say the weather is warmer for longer periods now, so plants bloom longer. Plants release pollen, which is a common allergen.

Doctors do not know for sure what's making allergies increase. But they do know how to treat them with medicine. "There is very good treatment for allergies," Nish says. "No one should suffer with symptoms."

Take Cover!

Dust and other allergens that float into your nose are in for a blast-a cough or a sneeze, that is! Both are natural *reflexes*, or responses, to help keep you from getting sick. Here's a look at the big bursts.

Sneeze
Sneezes start at the back of your throat. Each quick burst can force out up to 40,000 droplets of saliva. The tiny droplets travel at up to 300 miles per hour.

Cough

Coughs come out of your lungs. Each blast can push out 3,000 saliva droplets as fast as 50 miles per hour. Enough air comes out to almost fill a two-liter bottle.
1. According to the text, what are increasing in the United States?
 A. allergens
 B. germs
 C. allergies
 D. reflexes

2. Which of the following best describes the solution proposed in the text for people who suffer from allergies?
 A. The solution is to stay away from dust and mold.
 B. The solution is to stop eating milk products and eggs.
 C. The solution is to hide from anything that causes allergies.
 D. The solution is taking medicine to help with allergy symptoms.

3. Allergies can affect someone's everyday life.
 What evidence can be used to support the statement?
 A. "More people in the United States have allergies today compared with decades ago."
 B. "Allergens in the air aren't the only problem."
 C. "Those foods can even cause some people to have trouble breathing."
 D. "But kids today come in contact with fewer germs than their grandparents did."

4. What can be concluded from the passage?
 A. A person with allergies is sick and needs to see a doctor.
 B. A person who sneezes and coughs often may have allergies.
 C. A person who drinks milk and eats eggs will definitely get allergies.
 D. A person who lives in a place with hot weather will never get allergies.

5. What is the main idea of this article?
 A. Allergies are increasing, but simple steps can be taken to cope with them.
 B. Our own human nature has produced more allergies than ever.
 C. Everyday foods have caused a higher proportion of allergies than ever.
 D. Coughs and sneezes are reflexes to allergens.
6. Read the sentences:

"There is very good treatment for allergies," Nish says. 'No one should suffer with symptoms.'"

As used in the text, what does "symptoms" mean?

A. changes in the body that are signs that a person is sick
B. changes in temperature that give people allergies
C. changes in medicine to treat people when they are sick
D. changes in people's immune systems that cause allergies

7. Choose the answer that best completes the sentence below.

Kids come into contact with fewer germs today. ________ their immune systems get confused and attack other things.

A. if
B. after
C. although
D. so

8. What can be concluded from the evidence that coughs and sneezes are natural reflexes and from the evidence that our immune system attacks allergens?

__

__

__
9. What two possible reasons for the increase in allergies are explained in the passage? Use evidence from the text to support your answer.

..

..

10. What can be concluded about the increase of allergies in the future? Use the evidence from the text to support your answer.

..

..
Think about a special event you experienced. Write to explain the event and why it was important to you.
People often help one another. Write to explain how you or someone you know helps others.

__

__

__

__

__

__

__
Think of someone or something that is special to you. Write to explain what is special to you and why.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
__
Name:

What is one item you would like to have? Write to describe the item and explain why you want it.

__
__
__
__
__
__
__
__
__
__
__
__
__
__
Imagine a local newspaper reports wants to know about your favorite school event. Write to describe the event and explain why it is your favorite.
Lesson 3.6

Choose a Multiplication Method

Estimate. Then choose a method to find the product.

\[
\begin{align*}
31 & \times 43 \\
67 & \times 85 \\
68 & \times 38 \\
95 & \times 17 \\
\hline
93 & + 1,240 \\
\hline
1,333
\end{align*}
\]

\[
\begin{align*}
49 & \times 54 \\
91 & \times 26 \\
82 & \times 19
\end{align*}
\]

\[
\begin{align*}
46 & \times 27 \\
41 & \times 33 \\
97 & \times 13 \\
75 & \times 69
\end{align*}
\]

Problem Solving

12. A movie theatre has 26 rows of seats. There are 18 seats in each row. How many seats are there in all?

13. Each class at Briarwood Elementary collected at least 54 cans of food during the food drive. If there are 29 classes in the school, what was the least number of cans collected?

Chapter 3 P61
Lesson Check (CC.4.NBT.5)

1. A choir needs new robes for each of its 46 singers. Each robe costs $32. What will be the total cost for all 46 robes?
 A $1,472 C $1,362
 B $1,372 D $230

2. A wall on the side of a building is made up of 52 rows of bricks with 44 bricks in each row. How many bricks make up the wall?
 A 3,080 C 488
 B 2,288 D 416

Spiral Review (CC.4.NBT.4, CC.4.NBT.5)

3. Which expression shows how to multiply 4×362 by using place value and expanded form? (Lesson 2.6)
 A $(4 \times 3) + (4 \times 6) + (4 \times 2)$
 B $(4 \times 300) + (4 \times 600) + (4 \times 200)$
 C $(4 \times 300) + (4 \times 60) + (4 \times 20)$
 D $(4 \times 300) + (4 \times 60) + (4 \times 2)$

4. Use the model below. What is the product 4×492? (Lesson 2.7)
 A 16 + 36 + 8 = 60
 B 160 + 36 + 8 = 204
 C 160 + 360 + 8 = 528
 D 1,600 + 360 + 8 = 1,968

5. What is the sum $13,094 + 259,728$? (Lesson 1.6)
 A 272,832
 B 272,822
 C 262,722
 D 262,712

6. During the 2008–2009 season, there were 801,372 people who attended the home hockey games in Philadelphia. There were 609,907 people who attended the home hockey games in Phoenix. How much greater was the home attendance in Philadelphia than in Phoenix that season? (Lesson 1.7)
 A 101,475
 B 191,465
 C 201,465
 D 202,465
Solve each problem. Use a bar model to help.

1. Mason counted an average of 18 birds at his bird feeder each day for 20 days. Gloria counted an average of 21 birds at her bird feeder each day for 16 days. How many more birds did Mason count at his feeder than Gloria counted at hers?

 Birds counted by Mason: $18 \times 20 = 360$
 Birds counted by Gloria: $21 \times 16 = 336$
 Draw a bar model to compare.
 Subtract: $360 - 336 = 24$
 So, Mason counted 24 more birds.

2. The 24 students in Ms. Lee's class each collected an average of 18 cans for recycling. The 21 students in Mr. Galvez's class each collected an average of 25 cans for recycling. How many more cans were collected by Mr. Galvez's class than Ms. Lee's class?

3. At East School, each of the 45 classrooms has an average of 22 students. At West School, each of the 42 classrooms has an average of 23 students. How many more students are at East School than at West School?

4. A zoo gift shop orders 18 boxes of 75 key rings each and 15 boxes of 80 refrigerator magnets each. How many more key rings than refrigerator magnets does the gift shop order?
Lesson Check (CC.4.OA.3)

1. Ace Manufacturing ordered 17 boxes with 85 ball bearings each. They also ordered 15 boxes with 90 springs each. How many more ball bearings than springs did they order?
 A 5
 B 85
 C 90
 D 95

2. Elton hiked 16 miles each day on a 12-day hiking trip. Lola hiked 14 miles each day on her 16-day hiking trip. In all, how many more miles did Lola hike than Elton hiked?
 A 2 miles
 B 18 miles
 C 32 miles
 D 118 miles

Spiral Review (CC.4.OA.2, CC.4.NBT.1, CC.4.NBT.3, CC.4.NBT.5)

3. An orchard has 24 rows of apple trees. There are 35 apple trees in each row. How many apple trees are in the orchard? (Lesson 3.6)
 A 59
 B 192
 C 740
 D 840

4. An amusement park reported 354,605 visitors last summer. What is this number rounded to the nearest thousand? (Lesson 1.4)
 A 354,600
 B 355,000
 C 360,000
 D 400,000

5. Attendance at the football game was 102,653. What is the value of the digit 6?
 (Lesson 1.1)
 A 6
 B 60
 C 600
 D 6,000

6. Jill's fish weighs 8 times as much as her parakeet. Together, the pets weigh 63 ounces. How much does the fish weigh? (Lesson 2.2)
 A 7 ounces
 B 49 ounces
 C 55 ounces
 D 56 ounces
Chapter 3 Extra Practice

Lesson 3.1
Choose a method. Then find the product.
1. 12×60
2. 56×40
3. 30×40
4. 50×67

Lesson 3.2
Estimate the product. Choose a method.
1. 33×76
2. 43×90
3. 47×86
4. 12×81
5. 46×47
6. 58×79
7. 24×73
8. 68×36

Lesson 3.3
Draw a model to represent the product.
Then record the product.
1. 41×16
2. 39×52
3. 94×36
Lesson 3.4

Record the product.

1. 53
 × 37
2. 48
 × 47
3. 65
 × 28
4. 92
 × 79

Lessons 3.5 - 3.6

Estimate. Then choose a method to find the product.

1. Estimate: ___________
 48
 × 21
2. Estimate: ___________
 $72
 × 46
3. Estimate: ___________
 39
 × 58

4. 27 × $19
5. 97 × 32
6. 44 × 69

Lesson 3.7

1. Last week, Ms. Simpson worked 28 hours. She stocked shelves for 45 minutes each hour for 14 of those hours. The rest of the time she worked in customer service. How many minutes last week did Ms. Simpson work in customer service? (Hint: 1 hour = 60 minutes)

2. The after-school craft center has 15 boxes of 64 crayons each. In 12 of the boxes, 28 of the crayons have not been used. All the rest have been used. How many of the crayons in the center have been used?
Estimate Quotients Using Multiples

Find two numbers the quotient is between. Then estimate the quotient.

1. $175 \div 6$
 - between 20 and 30
 - about 30
 - Think: $6 \times 20 = 120$ and $6 \times 30 = 180$. So, $175 \div 6$ is between 20 and 30. Since 175 is closer to 180 than to 120, the quotient is about 30.

2. $53 \div 3$

3. $75 \div 4$

4. $215 \div 9$

5. $284 \div 5$

6. $191 \div 3$

7. $100 \div 7$

8. $438 \div 7$

9. $103 \div 8$

10. $255 \div 9$

Problem Solving

11. Joy collected 287 aluminum cans in 6 hours. About how many cans did she collect per hour?

12. Paul sold 162 cups of lemonade in 5 hours. About how many cups of lemonade did he sell each hour?
Lesson Check (CC.4.NBT.6)

1. Abby did 121 sit-ups in 8 minutes. Which is the best estimate of the number of sit-ups she did in 1 minute?
 A) about 12
 B) about 15
 C) about 16
 D) about 20

2. The Garibaldi family drove 400 miles in 7 hours. Which is the best estimate of the number of miles they drove in 1 hour?
 A) about 40 miles
 B) about 50 miles
 C) about 60 miles
 D) about 70 miles

3. Twelve boys collected 16 aluminum cans each. Fifteen girls collected 14 aluminum cans each. How many more cans did the girls collect than the boys? (Lesson 3.7)
 A) 8
 B) 12
 C) 14
 D) 18

4. George bought 30 packs of football cards. There were 14 cards in each pack. How many cards did George buy? (Lesson 3.1)
 A) 170
 B) 320
 C) 420
 D) 520

5. Sarah made a necklace using 5 times as many blue beads as white beads. She used a total of 30 beads. How many blue beads did Sarah use? (Lesson 2.2)
 A) 5
 B) 6
 C) 24
 D) 25

6. This year, Ms. Webster flew 145,000 miles on business. Last year, she flew 83,125 miles on business. How many more miles did Ms. Webster fly on business this year? (Lesson 1.7)
 A) 61,125 miles
 B) 61,875 miles
 C) 61,985 miles
 D) 62,125 miles
Remainders

Use counters to find the quotient and remainder.
1. \(13 \div 4\)
 \(3\) \(r1\)
2. \(24 \div 7\)
3. \(39 \div 5\)
4. \(36 \div 8\)

5. \(6\)\(27\)
6. \(25 \div 9\)
7. \(3\)\(17\)
8. \(26 \div 4\)

Divide. Draw a quick picture to help.
9. \(14 \div 3\)
10. \(5\)\(29\)

Problem Solving

11. What is the quotient and remainder in the division problem modeled below?

12. Mark drew the following model and said it represented the problem \(21 \div 4\). Is Mark's model correct? If so, what is the quotient and remainder? If not, what is the correct quotient and remainder?
Lesson Check (CC.4.NBT.6)

1. What is the quotient and remainder for 32 ÷ 6?
 A 4 r3
 B 5 r1
 C 5 r2
 D 6 r1

2. What is the remainder in the division problem modeled below?
 A 8
 B 4
 C 3
 D 1

Spiral Review (CC.4.OA.3, CC.4.NBT.2, CC.4.NBT.5)

3. Each kit to build a castle contains 235 parts. How many parts are in 4 of the kits? (Lesson 2.6)
 A 1,020
 B 940
 C 920
 D 840

4. In 2010, the population of Alaska was about 710,200. What is this number written in word form? (Lesson 1.2)
 A seven hundred ten thousand, two
 B seven hundred twelve thousand
 C seventy-one thousand, two
 D seven hundred ten thousand, two hundred

5. At the theater, one section of seats has 8 rows with 12 seats in each row. In the center of the first 3 rows are 4 broken seats that cannot be used. How many seats can be used in the section? (Lesson 2.9)
 A 84
 B 88
 C 92
 D 96

6. What partial products are shown by the model below? (Lesson 3.4)
 A 300, 24
 B 300, 600, 40, 60
 C 300, 60, 40, 24
 D 300, 180, 40, 24