The Circus Comes to Town

1. B
2. A
3. C
4. D
5. B
6. D
7. A
8. Donald Seastrunk sends an email to the mayor’s office to complain about the jugglers.
9. The mayor can’t order the police to fine the jugglers, because the jugglers might sue the city. If they did, the case would go to court and the city could lose a lot of money.
10. Answers will vary.

The Ever Changing Sky

1. B
2. C
3. C
4. A
5. D
6. A
7. B
8. A full moon occurs when the sun, moon, and earth nearly line up, and the sunlit part of the moon is facing the earth.
9. Astronomers can predict eclipses because of the regular orbit of the moon around the earth and the regular orbit of the earth around the sun.
10. Answers will vary.

The Farmer, the Snake, and the Eggs

1. B
2. B
3. C
4. D
5. D
6. D
7. B
8. He had to find a long stick with a hook at the end of it. Once he found a stick that was hooked at the end in the woods, he went back to the coop and poked the snake with it. He was finally able to pull the rest of the snake’s body along with the hook and whack it away.
9. He got eggs from the chicken coop
10. Answers will vary.

The Magic Glasses

1. D
2. C
3. B
4. B
5. A
6. A
7. A
8. Violet notices a small bird smiling at her.
9. Answers will vary.
10. Answers will vary.

The Magic of Mime

1. A
2. D
3. B
4. C
5. A
6. C
7. B
8. Mimes practice to make all of their movements perfect so that the audience will know what to imagine.
9. An imaginative audience is necessary for a mime performance to work because the audience’s imagination provides the words, props, costumes, and stage sets for the stories being mimed. Without
after getting rid of the snake, picked some lettuce and a tomato, and got cured bacon from the shed. When he got back to his kitchen, he washed the lettuce and the tomato, and cooked up the bacon. When it was crispy he took it out of the pan and, using the leftover fat, he cooked up those eggs. Finally, he laid the eggs over the bacon, alongside the lettuce and tomatoes.

10. Answers will vary.
FOURTH GRADE STANDARDS PRACTICE / GO MATH Answer Key Packet E

<table>
<thead>
<tr>
<th>Lesson 6.1</th>
<th>Lesson 6.2</th>
<th>Lesson 6.3</th>
<th>Lesson 6.4</th>
<th>Lesson 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\frac{2}{3}$</td>
<td>1. $\frac{2}{6}, \frac{4}{12}$</td>
<td>1. 1</td>
<td>1. $\frac{8}{12}, \frac{9}{12}$</td>
<td>1. $\frac{2}{6}, \frac{3}{9}, \frac{4}{12}$</td>
</tr>
<tr>
<td>2. $\frac{6}{8}$</td>
<td>2. $\frac{4}{6}, \frac{8}{12}$</td>
<td>2. $\frac{3}{4}$</td>
<td>2. $\frac{3}{12}, \frac{8}{12}$</td>
<td>2. $\frac{20}{100}$ or $\frac{1}{5}$</td>
</tr>
<tr>
<td>3. $=$</td>
<td>3. $\frac{2}{4}, \frac{4}{8}$</td>
<td>3. 1</td>
<td>3. $\frac{3}{10}, \frac{5}{10}$</td>
<td>3. At the $\frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and final locations</td>
</tr>
<tr>
<td>4. \neq</td>
<td>4. $\frac{8}{10}, \frac{80}{100}$</td>
<td>4. $\frac{2}{3}/$</td>
<td>4. $\frac{12}{20}, \frac{15}{20}$</td>
<td>4. 12 blueberry muffins</td>
</tr>
<tr>
<td>5. $=$</td>
<td>5. $\frac{6}{8}$</td>
<td>5. 1</td>
<td>5. $\frac{4}{8}, \frac{7}{8}$</td>
<td>5. B</td>
</tr>
<tr>
<td>6. $=$</td>
<td>6. \neq</td>
<td>6. $\frac{1}{3}$</td>
<td>6. $\frac{8}{12}, \frac{5}{12}$</td>
<td>6. C</td>
</tr>
<tr>
<td>7. \neq</td>
<td>7. \neq</td>
<td>7. $\frac{1}{4}$</td>
<td>7. $\frac{3}{12}, \frac{2}{12}$</td>
<td>7. D</td>
</tr>
<tr>
<td>8. $=$</td>
<td>8. $\frac{2}{5}$</td>
<td>8. \neq</td>
<td>8. $\frac{12}{2}$</td>
<td>8. D</td>
</tr>
<tr>
<td>9. $=$</td>
<td>9. $=$</td>
<td>9. \neq</td>
<td>9. \neq</td>
<td>9. C</td>
</tr>
<tr>
<td>10. \neq</td>
<td>10. \neq</td>
<td>10. \neq</td>
<td>10. \neq</td>
<td>10. A</td>
</tr>
<tr>
<td>11. JAMAL AND STEVE</td>
<td>11. $=$</td>
<td>11. $=$</td>
<td>11. $=$</td>
<td>11. D</td>
</tr>
<tr>
<td>12. $\frac{2}{3}, \frac{4}{6}$</td>
<td>12. \neq</td>
<td>12. \neq</td>
<td>12. \neq</td>
<td>12. B</td>
</tr>
<tr>
<td>1. A</td>
<td>13. $\frac{1}{3}$ and $\frac{2}{6}$</td>
<td>13. \neq</td>
<td>13. \neq</td>
<td>13. D</td>
</tr>
<tr>
<td>2. B</td>
<td>14. $\frac{2}{5}$ and $\frac{4}{10}$</td>
<td>14. \neq</td>
<td>14. \neq</td>
<td>14. B</td>
</tr>
<tr>
<td>3. B</td>
<td>15. $=$</td>
<td>15. $=$</td>
<td>15. $=$</td>
<td>15. A</td>
</tr>
<tr>
<td>5. A</td>
<td>17. $\frac{3}{4}$</td>
<td>17. $\frac{4}{10}$ and $\frac{5}{10}$</td>
<td>17. $\frac{4}{10}$ and $\frac{5}{10}$</td>
<td>17. B</td>
</tr>
<tr>
<td>6. D</td>
<td>18. no, $\frac{2}{5}$ meter</td>
<td></td>
<td>18. no, $\frac{2}{5}$ meter</td>
<td>18. A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOURTH GRADE STANDARDS PRACTICE / ONLINE MATH Answer Key Packet E

<table>
<thead>
<tr>
<th>Page 1</th>
<th>Page 2</th>
<th>Page 3</th>
<th>Page 4</th>
<th>Page 5</th>
</tr>
</thead>
</table>
| 1. Area model: The first rectangle would have 560 in it and the second rectangle would have 42 in it. Add those together for a product of 602. | 1. 29 R1 (remainder 1)
2. \(88 \div 5 = 17 \text{ R3; } 5 \times 10 = 50 \text{ leaving 38 left; } 5 \times 7 = 35 \text{ leaving 3 left; } 10 + 7 = 17 \text{ R3} \) | 1. Area model: The first rectangle is \(80 \times 5 = 400\) and the second rectangle is \(5 \times 3 = 15\). The product is \(400 + 15 = 415\).
2. Partial products: \((80 \times 5) + (3 \times 5) = 400 + 15 = 415\).
3. Repeated addition: \(83 + 83 + 83 + 83 = 415\).
4. Possible method: partial products: \(70 \times 4 = 280; 9 \times 9 = 36; 280 + 36 = 316\)
5. Possible method: repeated addition: \(45 + 45 = 90\). | 1. Possible method:
\(66 + 6 = 72; 66 + 6 = 11\) and \(6 + 6 = 1; 11 + 1 = 12\)
2. Possible method:
\(30 + 15 = 45; 30 + 3 = 10\) and \(15 + 3 = 5; 10 + 5 = 15\) | 1. \(67 \div 5 = 13 \text{ R2}\)
2. Tables: 14 tables because there are 2 “extra” students that are left without a seat if only 13 tables are used.
3. There are 2 students sitting at the last table.
4. There will be 3 empty seats at the last table. |

Notes
- For each problem, multiple methods are provided to solve the problem.
- Area model, partial products, repeated addition, and possible methods are used.
- The focus is on understanding the concepts of multiplication and division.